Issues in Assessing Environmental Exposures to Manufactured Nanomaterials
نویسندگان
چکیده
Manufactured nanomaterials (MNs) are commonly considered to be commercial products possessing at least one dimension in the size range of 10(-9) m to 10(-7) m. As particles in this size range represent the smaller fraction of colloidal particles characterized by dimensions of 10(-9) m to 10(-6) m, they differ from both molecular species and bulk particulate matter in the sense that they are unlikely to exhibit significant settling under normal gravitational conditions and they are also likely to exhibit significantly diminished diffusivities (when compared to truly dissolved species) in environmental media. As air/water, air/soil, and water/soil intermedium transport is governed by diffusive processes in the absence of significant gravitational and inertial impaction processes in environmental systems, models of MN environmental intermedium transport behavior will likely require an emphasis on kinetic approaches. This review focuses on the likely environmental fate and transport of MNs in atmospheric and aquatic systems. Should significant atmospheric MNs emission occur, previous observations suggest that MNs may likely exhibit an atmospheric residence time of ten to twenty days. Moreover, while atmospheric MN aggregates in a size range of 10(-7) m to 10(-6) m will likely be most mobile, they are least likely to deposit in the human respiratory system. An examination of various procedures including the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal particle suspension stability in water indicates that more sophisticated approaches may be necessary in order to develop aquatic exposure models of acceptable uncertainty. In addition, concepts such as Critical Coagulation Concentrations and Critical Zeta Potentials may prove to be quite useful in environmental aquatic exposure assessments.
منابع مشابه
On the Toxicity of Therapeutically Used Nanoparticles: An Overview
Human beings have been exposed to airborne nanosized particles throughout their evolutionary stages, and such exposures have increased dramatically over the last century. The rapidly developing field of nanotechnology will result in new sources of this exposure, through inhalation, ingestion, and injection. Although nanomaterials are currently being widely used in modern technology, there is a ...
متن کاملCurrent Research and Opportunities to Address Environmental Asbestos Exposures
Asbestos-related diseases continue to result in approximately 120,000 deaths every year in the United States and worldwide. Although extensive research has been conducted on health effects of occupational exposures to asbestos, many issues related to environmental asbestos exposures remain unresolved. For example, environmental asbestos exposures associated with a former mine in Libby, Montana,...
متن کاملApplications and physicochemical characterization of nanomaterials in environmental, health, and safety studies
As commercially manufactured nanomaterials become more commonplace, they have the potential to enter ecological and biological environments during their lifecycle of production, distribution, use or disposal. Despite rapid advances in the production and application of nanomaterials, little is known about how they may interact with the environment or affect human health. This research investigat...
متن کاملA Review of Nanoparticles Toxicity and Their Routes of Exposures
The new scientific innovation of engineering nanoparticles (NPs) at the atomic scale (diameter<100nm) has led to numerous novel and useful wide applications in electronics, chemicals, environmental protection, medical imaging, disease diagnoses, drug delivery, cancer treatment, gene therapy, etc.. The manufactures and consumers of the nanoparticles-related industrial products, however, a...
متن کاملOccupational risk management of engineered nanoparticles.
The earliest and most extensive societal exposures to engineered nanoparticles are likely to occur in the workplace. Until toxicologic and health effects research moves forward to characterize more broadly the potential hazards of nanoparticles and to provide a scientific basis for appropriate control of nanomaterials in the workplace, current and future workers may be at risk from occupational...
متن کامل